Биологический круговорот

В наши дни растения и животные преобразуют природную среду. Примером тому могут служить коралловые рифы в океане, отложения торфа на болотах, распространение лишайников, расселение водорослей, разрушающих горы, и микроорганизмов. В биологическом круговороте участвуют практически все химические элементы периодической системы Д. И. Менделеева, но среди них выделяются основные, жизненно необходимые.

Углерод. Источники углерода в природе столь же многочисленны, сколь и разнообразны. Между тем только углекислота, находящаяся либо в газообразном состоянии в атмосфере, либо в растворенном состоянии в воде, представляет собой тот источник углерода, который служит основой для переработки его в органическое вещество живых существ. Захваченная растениями углекислота в процессе фотосинтеза превращается в сахар, а другими процессами биосинтеза преобразуется в протеиды, липиды и т. д. Эти различные вещества служат углеводным питанием животным и не зеленым растениям. С другой стороны, все организмы дышат и выбрасывают в атмосферу углерод в форме углекислоты. Когда же наступает смерть, то сапрофаги разлагают и минерализуют трупы, образуя цепи питания, в конце которых углерод нередко вновь поступает в круговорот в форме углекислоты (так называемое «почвенное дыхание»). Накапливающиеся мертвые растительные и животные остатки замедляют круговорот углерода: животные-сапрофаги и сапрофитические микроорганизмы, обитающие в почве, превращают накопившиеся на ее поверхности остатки в гумус. Скорость воздействия организмов на гумус далеко не одинакова, а цепи грибов и бактерий, приводящие к окончательной минерализации углерода, бывают различной длины. Как правило, гумус разлагается быстро.
Иногда цепь может быть короткой и неполной. В этом случае цепь консументов лишается возможности действовать из-за недостатка воздуха или слишком высокой кислотности, в результате чего органические остатки накапливаются в форме торфа и образуют торфяные болота. В некоторых торфяных болотах с пышным покровом из сфагновых мхов слой торфа достигает 20 м и более. Здесь круговорот и приостанавливается. Скопления ископаемых органических соединений в виде каменного угля и нефти свидетельствуют о том, что круговорот замедлился в масштабах геологического времени.

В воде также происходит замедление круговорота углерода, поскольку углекислота здесь накапливается в виде мела, известняка, доломита или кораллов. Часто эти массы углерода остаются вне круговорота в течение целых геологических периодов, пока они не поднимутся над уровнем моря. С этого момента в результате растворения известняка атмосферными осадками и подземными водами или под воздействием лишайников, а также корней цветковых растений начинается включение углерода и кальция в круговорот.

АЗОТ. Круговорот азота довольно сложен. Атмосфера содержит 78% азота, однако, для того чтобы он мог быть использован подавляющим большинством живых организмов, он должен быть зафиксирован в виде определенных химических соединений. Фиксация азота происходит в процессе вулканической деятельности, при грозовых разрядах в атмосфере, при сгорании метеоритов. Однако несравненно большее значение в процессе фиксации азота имеют микроорганизмы как свободно живущие, так и обитающие на корнях, а иногда и на листьях некоторых растений. Из свободно живущих бактерий азот фиксируют аэробные организмы (т. е. обитающие при доступе кислорода), а также анаэробные (т. е. обитающие без доступа кислорода). Количество азота, фиксируемого такими свободно живущими бактериями, составляет от 2 — 3 кг до 5 — 6 кг на 1 га в год. Определенную роль в фиксации азота играют, видимо, обитающие в почве сине-зеленые водоросли.

Поступая в почву с продуктами обмена веществ и остатками растений и животных, органические вещества разлагаются до минеральных, при этом бактерии переводят азот органических веществ в соли аммония.

Способность азота в широких пределах менять валентность определяет его специфическую роль в создании разнообразных органических соединений.

Большой круговорот воды на поверхности земного шара хорошо известен. Вызываемое солнечной энергией испарение с водных пространств создает атмосферную влагу. Эта влага конденсируется в виде облаков, переносимых ветром. При охлаждении облаков выпадают осадки в виде дождя и снега. Осадки поглощаются почвой или стекают по ее поверхности. Вода возвращается в моря и океаны. Количество воды, испаряемой растениями, обычно велико. Если влаги и воды для растений много, испарение увеличивается. Одна береза испаряет за день 75 л воды, бук— 100 л, липа —200 л, а 1 га леса — от 20 до 50 тыс. л. Березняк, масса листвы которого на 1 га составляет лишь 4940 кг, испаряет 47 тыс. л воды в день, тогда как ельник, масса хвои которого на 1 га равна 31 тыс. кг. — только 43 тыс. л волы в лень. Пшеница на 1 га использует за период развития 3750 т воды, что соответствует 375 мм осадков.

Кислород в количественном отношении — главная составляющая живой материи. Если учитывать воду в тканях, то, например, тело человека содержит 62,8% кислорода и 19,4% углерода. Если рассматривать биосферу в целом, кислород по сравнению с углеродом и водородом является ее основным элементом.

Круговорот кислорода усложняется тем, что этот элемент может образовывать многочисленные химические соединения. В результате возникает множество промежуточных циклов между литосферой и атмосферой или между гидросферой и двумя этими средами.

Кислород, начиная с определенной концентрации, очень токсичен для клеток и тканей даже у аэробных организмов. Французский ученый Луи Пастер (1822 — 1895) доказал, что никакой живой анаэробный организм не может выдержать концентрацию кислорода, превышающую атмосферную на 1% (эффект Пастера).

Круговорот кислорода происходит в основном между атмосферой и живыми организмами. Процесс продуцирования и выделения кислорода в виде газа во время фотосинтеза противоположен процессу его потребления при дыхании. При этом происходит разрушение органических веществ и взаимодействие кислорода с водородом. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа: движение одного происходит в направлении, противоположном движению другого.

Сера. Преобладающая часть круговорота этого элемента имеет осадочную природу и происходит в почве и воде. Основной источник серы, доступный живым существам, — это всевозможные сульфаты. Хорошая растворимость в воде многих сульфатов облегчает доступ неорганической серы в экосистемы. Поглощая сульфаты, растения их восстанавливают и вырабатывают серосодержащие аминокислоты.

Различные органические отбросы биоценоза разлагаются бактериями, которые, в конце концов, вырабатывают сероводород из сульфопротеинов, содержащихся в почве. Некоторые бактерии тоже могут вырабатывать сероводород из сульфатов, восстанавливаемых ими в анаэробных условиях. Эти бактерии, утилизируя сульфаты, получают необходимую для их обмена веществ энергию.

С другой стороны, существуют бактерии, способные опять окислить сероводород до сульфатов, что вновь увеличивает запас серы, доступной продуцентам. Подобные бактерии называются хемосинтезирующими, так как они могут вырабатывать клеточную энергию без участия света, только за счет окисления простых химических веществ. Итак, в биосфере осадочные породы содержат основные запасы серы, которая встречается главным образом в виде пирита, а также и сульфатов, например гипс.

Фосфор. Круговорот фосфора относительно прост и весьма неполон. Фосфор — один из основных составляющих элементов живого вещества, в котором он содержится довольно в большом количестве. Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Главные источники неорганического фосфора — изверженные породы (например, апатиты) или осадочные породы (например, фосфориты). Минеральный фосфор — редкий элемент в биосфере, в земной коре его не больше 1%, что является основным фактором, лимитирующим продуктивность многочисленных экосистем. Неорганический фосфор из пород земной коры вовлекается в циркуляцию путем выщелачивания и растворения в континентальных водах. Он попадает в экосистемы суши, поглощается растениями, которые при его участии синтезируют различные органические соединения, и таким образом включается в трофические связи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где вновь подвергаются воздействию микроорганизмов и превращаются в минеральные ортофосфаты, готовые к употреблению зелеными растениями и другими автотрофами (от греч. autos — сам и trophe — пища, питание).

В водные экосистемы фосфор приносится текучими водами. Реки непрерывно обогащают океаны фосфатами, что способствует развитию фитопланктона и живых организмов, расположенных на различных уровнях пищевых цепей пресноводных или морских водоемов. История любого химического элемента в ландшафте складывается из бесчисленного множества круговоротов, различных по масштабу и продолжительности. Противоположные процессы — биогенная аккумуляция и минерализация — образуют единый биологический круговорот атомов.

Тундровые ландшафты образуются в условиях холодного климата с коротким летним периодом и потому малопродуктивны. Низкие температуры воздуха и почвы — первопричина многих особенностей тундры. С дефицитом тепла связаны и «волны жизни»: в годы с более теплым летом возрастает продукция живого вещества. Некоторые растения цветут в тундре только в благоприятные годы (например, иван-чай в арктической тундре). Растения в тундре растут медленно. Лишайники за год вырастают на 1 — 10 мм; можжевельник на Кольском полуострове с диаметром ствола 83 мм может иметь до 544 годичных колец. Сказывается не только влияние низких температур, но и отсутствие достаточного количества питательных элементов.

Во многих тундрах большую роль играют мхи и лишайники. Есть ландшафты, в которых они преобладают.

В тундре Хибин биомасса растений равна 170,3 u/га, из них 72% приходится на подземную часть. Ежегодный прирост биомассы составляет 23,5 ц/га, а ежегодный опад — 21,9 ц/га. Таким образом, истинный прирост, равный разности между приростом и опадом, очень мал — 1,6 ц/га (в северной тайге — 10 ц/га, в южной тайге — 30 ц/га, во влажных тропиках — 75 ц/га).

Из-за низкой температуры разложение остатков организмов в тундре протекает медленно, многие группы микроорганизмов не функционируют или же работают очень слабо (бактерии, разлагающие клетчатку, и др.). Это ведет к накоплению органических веществ на поверхности и в почве.

Широколиственные леса в России распространены в европейской части, на Кавказе, Дальнем Востоке. Это все регионы влажного умеренно-теплого климата. Биомасса здесь не намного меньше, чем во влажных тропиках (3000 5000 ц/га), но ежегодная продукция и зеленая ассимилирующая масса меньше в несколько раз. Продукция колеблется от 80 до 150 ц/га (во влажных тропиках — 300 — 500 ц/га), зеленая ассимилирующая масса в дубравах составляет 1% биомассы и достигает 40 ц/га (8% и 400 ц/га во влажных тропиках).

Широколиственные деревья сравнительно богаты золой, особенно листья (до 5%). В золе листьев много Са — до 20% или 0,6 — 3,8% на сухое вещество, меньше К (0,15 — 2,0%) и Si (0,4 — 2,8%), еще меньше Mg, А1, Р, а также Fe, Mn, Na, С1.

В тайге биомасса не намного уступает влажным тропикам и широколиственным лесам. В южной тайге биомасса превышает 3000 ц/га и только в северной тайге понижается до 500 — 1500 ц/га. Зоомасса в тайге ничтожна (в южной тайге — 0,01% биомассы).

Более 60% биомассы представлено древесиной, состоящей из клетчатки (около 50%), лигнина (20 — 30%), гемицеллюлозы (более 10%).

Ежегодная продукция в южной тайге почти такая же, как в широколиственных лесах (85 ц/га против 90 ц/га в дубравах), в северной тайге — намного меньше (40 — 60 ц/га). Растительный опад в южной тайге меньше, чем в дубравах, и равен 55 ц/га (в дубравах 65 ц/га); в северной тайге еще меньше — 35 ц/га.

Влажные тропики занимают большие площади в экваториальной Африке, Южной и Юго-Восточной Азии, Центральной и Южной Америке. Еще шире они были распространены в прошлые геологические эпохи (с конца девона). Изобилие тепла сочетается здесь с изобилием осадков, тепло и влага не лимитируют единого биологического круговорота атомов. Миграция атомов происходит с одинаковой интенсивностью в течение всего года, периодичность миграции выражена слабо.
Обилие тепла и влаги определяет большую ежегодную продукцию живого вещества во влажных тропиках. Величина продукции здесь в 2 — 3 раза больше, чем в широколиственных лесах и тайге, и достигает 300 — 500 ц/га. По соотношениям биомассы и продукции, надземной и подземной, зеленой и незеленой биомассы и многим другим показателям влажные тропики также существенно не отличаются от других влажных лесных ландшафтов. Однако по количеству калия в биомассе влажные тропики отличаются от тайги и широколиственных лесов. Биомасса животных во влажных тропиках составляет около 1% биомассы (45 ц/га). Это главным образом термиты, муравьи и другие низшие животные. По этому показателю влажные тропики резко отличаются от тайги, в которой накапливается лишь 3,6 ц/га зоомассы (0,01% биомассы). Разложение большой массы органических веществ насыщает воды углекислым газом и органическими кислотами. Основными элементами, попадающими в воду при биологическом круговороте, являются Si и Са, К. Mg, Al, Fe, Mn, S. В листьях тропических деревьев высоко содержание Si. При биологическом круговороте дождевыми водами из листьев вымывается большое количество N, Р, К, Са, Mg, Na, CI, S и других элементов.

Степи и пустыни близки по многим геохимическим свойствам. Биомасса в степях на порядок меньше, чем в лесных ландшафтах, — от 100 до 350 ц/га. Большая ее часть в отличие от лесов сосредоточена в корнях (70 — 90%). Биомасса животных в черноземных степях около 6%. Ежегодная продукция составляет 13 — 50 ц/га, т. е. 30 — 50% биомассы.

Ежегодно в биологический круговорот атомов в степях вовлекаются сотни килограммов растворимых в воде веществ (на 1 га), т. е. значительно больше, чем в тайге (луговые степи — 700 кг/га; южная тайга — 155 кг/га). В луговых степях с опадом ежегодно возвращаются 700 кг/га растворимых в воде веществ, в сухих — 150 кг/га (в ельниках южной тайги — 120 кг/га). В опаде большую роль играют основания, полностью нейтрализующие органические кислоты.

В отличие от лесных ландшафтов в почвах степей накапливается в 20 — 30 раз больше органического вещества, чем в биомассе (в луговых степях — до 8000 ц/га гумуса; в сухих степях — 1000 — 1500 ц/га). Для степей и пустынь наиболее характерны Са, Na и Mg, которые накапливаются при засолении в водах, почвах и продуктах выветривания.

По минеральному составу все степные травы делят на три группы: злаки с высоким содержанием Si и невысоким содержанием N; бобовые со значительным накоплением К, Са и N; разнотравье, занимающее промежуточное положение.


Буду благодарен, если Вы поделитесь этой статьей в социальных сетях: