Литосферные плиты Земли

Верхняя часть литосферы Земли — твердая и прочная, чего не скажешь о нижних ее горизонтах, которые постепенно переходят в литосферу с низкой вязкостью и значительно большей подвижностью. Толщина литосферы колеблется от 50 до 200 км на материках и от 5 до 15 км под дном океанов. Главное свойство литосферы — отсутствие монолитности. В литосфере имеются активные зоны, где опускаются или обрушиваются материковые окраины. Трансформные разломы разделяют всю толщу литосферы на гигантские глыбы.

Ученые давно пытались выяснить строение таких планетарных морфологических структур, как подвижные горные пояса, равнины, плато, плоскогорья. Однако различные гипотезы их происхождения основывались на представлениях о недрах Земли, существовавших прежде. Во второй половине XX в. геохимические, геофизические и геологические исследования во многих районах Земли привели к появлению гипотез о расширяющейся Земле и дрейфе материков. Кроме того, обнаружились новые данные о возможном перемешивании вещества в литосфере, о подкоровых течениях и радиоактивном распаде вещества с выделением огромного количества тепла.

Особое место в науке заняла гипотеза о движениях литосферных плит, построенная на результатах геофизических исследований океанов. В начале XX в. немецкий геофизик А. Вегенер (1880 — 1930) высказал идею о дрейфе материков. Отправная точка этой гипотезы — сходство в очертаниях восточного побережья Южной Америки и западного побережья Африки. В своих работах А. Вегенер исследовал «вязко-жидкое состояние земного шара», процессы растяжения океанического дна, сущность вулканизма. Его труды стали фундаментом, на котором в 60-е гг. XX в. была построена гипотеза «тектоники литосферных плит».

Литосферные плиты Земли

Модель Земли по этой гипотезе выглядела так: плиты, располагаясь на пластичном веществе астеносферы и обладая разной массой, находились в неустойчивом состоянии и могли продвигаться наподобие плавающих льдин. Они включали в себя не только всю толщу земной коры, но и верхнюю часть мантии. Перемещаясь, плиты сталкивались, терлись друг о друга, погружались одна под другую. Это приводило к возникновению в литосфере активных тектонических зон. Границами плит служили осевые (в том числе и рифтовые) зоны срединно-океанических хребтов, которые получили названия зон спрединга (или расширения дна океанов). Эти зоны отличаются высокой тектонической напряженностью, о чем свидетельствуют частые и сильные землетрясения и извержения вулканов. Из жерл вулканов и тектонических трещин на дно океанов поступают лавы, формирующие океаническую кору. Лавы расползаются по обе стороны срединно-океанического хребта. Самые молодые из лав располагаются в его центре, самые древние — по периферии дна океана, вблизи границы его с материком.

Скорости спрединга в разных океанах и в разное время изменялись от 1 до 18 см в год. Возраст пород изменялся от 3 — 5 до 150 млн. лет. Это означало, что в океанической коре нет пород старше 150 — 160 млн. лет, т. е. вся она не древнее юрского периода. Однако объемы магматического и вулканического материала, поставляемого из недр Земли на дно океанов, оказались настолько значительными, что простыми расчетами удалось доказать, как начиная с юрского периода океаны заполнялись молодой корой. Геофизики предложили механизм повторного «погружения» избытков океанической коры в глубины Земли и переработки ее в мантии. Это происходило в зонах пододвигания одной толщи коры под другую, которыми служили глубоководные желоба. В их недрах происходил обмен старой океанической коры на новую. Он включал два этапа. На первом из них в рифтовых зонах срединно-океанических хребтов осуществлялся процесс плавления вещества мантии и образования базальтов, т. е. формировалась габбро-базальтовая океаническая кора толщиной около 5 км. Ее блоки, перемещаясь, достигали окраин океанов и погружали ее в мантию. На втором этапе начиналось образование континентальной коры, которая в этой модели литосферных плит рассматривалась как результат вторичной переработки и переплавления океанической коры, затянутой в зоны пододвигания плит.